Axial Higgs mode detected by quantum pathway interference in RTe3
Franzosi, DB, Cacciapaglia, G., Cai, H., Deandrea, A. & Frandsen, M. Vector and axial-vector resonances in composite models of the Higgs boson. J. High Energy Phys. 201676 (2016).
Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11103–124 (2020).
Pekker, D. & Varma, C. Amplitude / Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6269–297 (2015).
Klemenz, S. et al. The role of delocalized chemical bonding in square-net-based topological semimetals. J. Am. Chem. Soc. 1426350–6359 (2020).
Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77235104 (2008).
Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6eaay6407 (2020).
Podolsky, D., Auerbach, A. & Arovas, DP Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84174522 (2011).
Zeilinger, A., Gähler, R., Shull, CG, Treimer, W. & Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 601067–1073 (1988).
Zhang, Y., Tan, Y.-W., Stormer, HL & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438201–204 (2005).
Qu, D.-X., Hor, YS, Xiong, J., Cava, RJ & Ong, NP Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329821–824 (2010).
Ryu, C., Samson, EC & Boshier, MG Quantum interference of currents in an atomtronic SQUID. Nat. Commun. 113338 (2020).
Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnology. 153–59 (2006).
Giazotto, F., Peltonen, JT, Meschke, M. & Pekola, JP Superconducting quantum interference proximity transistor. Nat. Phys. 6254–259 (2010).
Mittal, S., Orre, VV, Goldschmidt, EA & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photonics 15542–548 (2021).
Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 7114–118 (2011).
Barik, S. et al. A topological quantum optics interface. Science 359666–668 (2018).
Popescu, S. Dynamical quantum non-locality. Nat. Phys. 6151–153 (2010).
Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3ON6.67. Nat. Phys. 8871–876 (2012).
Lavagnini, M. et al. Raman scattering evidence for a cascade evolution of the charge-density-wave collective amplitude mode. Phys. Rev. B 81081101 (2010).
Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16159–163 (2020).
Yusupov, RV, Mertelj, T., Chu, J.-H., Fisher, IR & Mihailovic, D. Single-particle and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho, Dy, Tb). Phys. Rev. Lett. 101246402 (2008).
Liu, HY et al. Possible observation of parametrically amplified coherent phasons in K0.3MonON3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88045104 (2013).
Zocco, DA et al. Pressure dependence of the charge-density-wave and superconducting states in GdTe3TbTe3and DyTe3. Phys. Rev. B 91205114 (2015).
Xi, X. et al. Strongly enhanced charge-density-wave order in NbSe monolayer2. Nat. Nanotechnology. 10765–769 (2015).
Yoshikawa, N. et al. Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave. Nat. Phys. 17909–914 (2021).
Mohammadzadeh, A. et al. Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Appl. Phys. Lett. 118223101 (2021).
Klein, MV Theory of Raman scattering from charge-density-wave phonons. Phys. Rev. B 257192–7208 (1982).
Wang, Y. et al. The range of non-Kitaev terms and fractional particles in α-RuCl3. npj Quantum Mater. 514 (2020).
Devereaux, TP & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79175–233 (2007).
Cardona, M. Light Scattering in Solids 1 (Springer, 1975).
Koningstein, JA & Mortensen, OS Electronic Raman spectra IV: relation between the scattering tensor and the symmetry of the crystal field. J. Opt. Soc. Am. 581208 (1968).
Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471617–620 (2011).
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 66242 (2015).
Friedman, J. & Hochstrasser, RM Interference effects in resonance Raman spectroscopy. Chem. Phys. Lett. 32414–419 (1975).
Chen, C., Yin, Y.-Y. & Elliott, DS Interference between optical transitions. Phys. Rev. Lett. 64507–510 (1990).
Eiter, H.-M. et al. Alternative route to charge density wave formation in multiband systems. Proc. Natl Acad. Sci. USA 11064–69 (2013).
Gray, MJ et al. A cleanroom in a glovebox. Rev. Sci. Instrum. 91073909 (2020).
Tian, Y. et al. Low vibration high numerical aperture automated variable temperature Raman microscope. Rev. Sci. Instrum. 87043105 (2016).
Maschek, M. et al. Competing soft phonon modes at the charge-density-wave transitions in DyTe3. Phys. Rev. B 98094304 (2018).
Powell, RC Symmetry, Group Theory, and the Physical Properties of Crystals Vol. 824 (Springer, 2010).